This work was supported by the National Natural Scientific Foundation of China and the Natural Scientific Foundation of Fujian Province.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1111). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Cao, R., Hong, M.-C., Jiang, F.-L. \& Liu, H.-Q. (1995). Acta Cryst. C51, 1280-1282.
Cao, R., Hong, M.-C., Jiang, F.-L., Xie, X.-L. \& Liu, H.-Q. (1996). Polyhedron. In the press.
Fenn, R. H. \& Segrott, G. R. (1972). J. Chem. Soc. Dalton Trans. pp. 330-333.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sato, M., Yamamoto, A., Imada, K., Katsube, Y., Tanaka, N. \& Higashi, T. (1992). J. Appl. Cryst. 25, 348-357.
Sheldrick, G. M. (1987). SHELXTL-Plus. PC Version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 2693-2695

Hexaaquacobalt(II) Bis[(2-Hydroxy-1,3-propanediamine- $N, N, N^{\prime}, N^{\prime}$-tetraacetato)cobalt(III)]

Xiao-Ming Chen, ${ }^{a}$ Hul-An Chen, ${ }^{a}$ Bo-Mu Wu ${ }^{b}$ and Thomas C. W. Mak ${ }^{b}$
${ }^{a}$ Department of Chemistry, Zhongshan University, 135
Xingang Rd. W., Guangzhou, 510275, People's Republic of China, and ${ }^{b}$ Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. E-mail: cedc03@zsulink.zsu.edu.cn

(Received 14 February 1996; accepted 13 June 1996)

Abstract

The structure of the title complex, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{Co}-$ $\left.\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{9}\right)\right]_{2}$, is comprised of discrete $[\mathrm{Co}(\mathrm{hpdta})]^{-}$ anions (H_{4} hpdta is 2 -hydroxy-1,3-propanediamine$N, N, N^{\prime}, N^{\prime}$-tetraacetic acid) and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations in a $2: 1$ molar ratio. The trivalent Co atom in the anion is coordinated by the hexadentate hpdta chelate ligand, with two amino-N atoms [Co-N 1.948 (3) Å] and four O atoms of the four monodentate carboxylato groups [Co-O 1.869 (2)-1.914 (2) Å] in a distorted octahedral arrangement, whereas the divalent Co atom in

the cation is coordinated in an octahedral manner by six aqua ligands [$\mathrm{Co}-\mathrm{O} 2.078$ (2)-2.124 (2) Å]. The crystal structure is stabilized by extensive hydrogen bonding. Each aqua ligand forms two donor hydrogen bonds with the carboxyl O atoms from adjacent anions and the hydroxyl group forms a hydrogen bond with an adjacent carboxyl O atom.

Comment

2-Hydroxy-1,3-propanediamine- $N, N, N^{\prime}, N^{\prime}$ - tetraacetic acid ($\mathrm{H}_{4} \mathrm{hpdta}$) is a structural analogue of the widely used chelate ligand ethylenediamine- $N, N, N^{\prime}, N^{\prime}$-tetraacetic acid. Hence, it is somewhat surprising that metal complexes of H_{4} hpdta have received little attention. Only a few metal complexes of hpdta have been structurally characterized, including two cobalt(III) complexes (Kalina, Pavelčik \& Majer, 1978; Sato \& Yano, 1989) and one palladium(II) complex (Song, Zhang, Li, Jin \& Jin, 1992). In this paper, we report the preparation and structure of a mixed-valent cobalt complex of hpdta, namely $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{Co}(\mathrm{hpdta})]_{2}$, (I). The complex was obtained from a mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ and H_{4} hpdta in a weakly acidic aqueous solution.

The crystal structure of the mixed-valent complex comprises discrete $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and $\left.{ }^{[C o(h p d t a)}\right]^{-}$anions in a $1: 2$ molar ratio. The $\mathrm{Co}^{\text {III }}$ atom in the anion is coordinated by a hexadentate hpdta chelate ligand, being surrounded by two N atoms [Co-N 1.948(3) \AA] and four O atoms from the four monodentate carboxylato groups [$\mathrm{Co}-$ O 1.869 (2)-1.914 (2) \AA] in a distorted octahedral arrangement, with the most distorted bond angle being $\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 2$ at $97.7(1)^{\circ}$ (Fig. 1). The bond lengths and angles of this anion are strikingly similar to those of the cobalt(III) complexes of hpdta reported previously (Kalina, Pavelčik \& Majer, 1978; Sato \& Yano, 1989). It is noteworthy that the Col-O8 [1.869 (2) Å] and $\mathrm{Co} 1-\mathrm{O} 4$ [1.894 (2) Å] bonds are significantly shorter than the Col-O2 [1.904 (2) Å] and Col-O6 [1.914 (2) \AA] bonds, which are trans with respect to the $\mathrm{Co}-\mathrm{N}$ bonds, demonstrating clearly that nitrogen has a much greater trans effect than oxygen. In the $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation, the Co^{11} atom is located at an inversion centre and is surrounded by six centrosymmetrically related aqua ligands $[\mathrm{Co}-\mathrm{O}$ 2.078 (2)-2.124 (2) A〕] in a slightly distorted octahedral

Fig. 1. An ORTEP (Johnson, 1965) plot (30% probability) of the $[\mathrm{Co}(\mathrm{hpdta})]^{-}$anion.
arrangement, where the most distorted bond angle is $\mathrm{O} 1 W-\mathrm{Co} 2-\mathrm{O} 2 W$ at $93.34(9)^{\circ}$. The geometry of this cation is similar to those of $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(M=\mathrm{Zn}$, Mn; Auerbach, Stockheim, Weyhermüller, Wieghardt \& Nuber, 1993).

Hydrogen bonding plays a vital role in stabilizing the crystal structure. The hydroxyl group forms a donor hydrogen bond with a carboxyl O atom [$\mathrm{O} 1 \cdots \mathrm{O} 9$ 2.912 (4) \AA] from an adjacent anion. Each aqua ligand also forms two donor hydrogen bonds [O . . O 2.703 (3)-2.782 (4) \AA] with carboxyl O atoms from adjacent anions, resulting in each $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation forming 12 donor hydrogen bonds with six adjacent

Fig. 2. Perspective view showing the hydrogen-bonding scheme. The cross-hatched circles, open circles, bottom left-to-top right lined circles and bottom right-to-top left lined circles represent the Co , O, N and C atoms, respectively.
[Co(hpdta)] ${ }^{-}$anions (Fig. 2). Extensive hydrogen bonding similar to that in the title complex has been found in metal complexes containing analogous $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations ($M=\mathrm{Zn}$, Mn; Auerbach, Stockheim, Weyhermüller, Wieghardt \& Nuber, 1993). The hydrogen bonds in the title complex extend the structure into twodimensional layers parallel to the $y z$ plane.

Finally, it is noteworthy that complexes containing [Co(hpdta) $]^{-}$anions were commonly prepared by oxidation of Co^{11} ions with hydrogen peroxide. In contrast, the title complex was prepared by auto-oxidation of $\mathrm{Co}^{\text {II }}$ with air in a weakly acidic aqueous solution (pH 5).

Fig. 3. The molecular packing of the title complex in the lattice.

Experimental

An aqueous solution (2 ml) of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.29 \mathrm{~g}$, 2.0 mmol) was added to an aqueous solution (8 ml) of H_{4} hpdta $(0.51 \mathrm{~g}, 1.0 \mathrm{mmol})$. The mixture was heated at 323 K , stirred for 10 min and the resulting solution adjusted to pH 5 with an aqueous solution of 2 N NaOH and allowed to stand in air. Reddish brown crystals of the title compound were deposited after a week.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{Co}-$
$\left.\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{9}\right)\right]_{2}$
$M_{r}=921.37$
Monoclinic
$P 2_{1} / c$
$a=16.434$ (2) \AA
$b=6.990$ (3) \AA
$c=16.204(2) \AA$
$\beta=117.83(1)^{\circ}$
$V=1646.1(8) \AA^{3}$
$Z=2$
$D_{x}=1.859 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer $\quad R_{\text {int }}=0.027$
ω scans $\quad \theta_{\text {max }}=27.5^{\circ}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25

> reflections
$\theta=8-13^{\circ}$
$\mu=1.600 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Polyhedral
$0.42 \times 0.36 \times 0.28 \mathrm{~mm}$
Reddish brown

Absorption correction:
ψ scan (Kopfmann \&
Huber, 1968)
$T_{\text {min }}=0.58, \quad T_{\text {max }}=0.64$
3880 measured reflections
3744 independent reflections 3165 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0452$
$w R\left(F^{2}\right)=0.1225$
$S=1.075$
3744 reflections
241 parameters
$\mathrm{H}(\mathrm{C})$ atoms riding and $\mathrm{H}(\mathrm{O})$
atoms located and fixed
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.082 P)^{2}\right.$
$+1.287 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$$
\begin{aligned}
& h=-21 \rightarrow 18 \\
& k=-9 \rightarrow 0 \\
& l=0 \rightarrow 21
\end{aligned}
$$

3 standard reflections monitored every 100 reflections intensity decay: 0.017%

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Col	0.76246 (2)	0.18929 (6)	0.48580 (3)	0.0182 (1)
Co 2	1/2	0	0	0.0243 (2)
Ol	0.9244 (2)	-0.2656 (4)	0.4447 (2)	0.0355 (6)
Cl	0.9195 (2)	-0.0650 (5)	0.5570 (2)	0.0249 (6)
C2	0.8687 (2)	-0.2266 (5)	0.4888 (2)	0.0266 (6)
C3	0.7690 (2)	-0.1894 (5)	0.4183 (2)	0.0282 (7)
N1	0.8629 (2)	0.0538 (4)	0.5875 (2)	0.0193 (5)
N2	0.7449 (2)	0.0130 (4)	0.3857 (2)	0.0230 (5)
C4	0.9226 (2)	0.2112 (5)	0.6487 (2)	0.0248 (6)
C5	0.8622 (2)	0.3766 (5)	0.6480 (2)	0.0222 (6)
O2	0.7795 (1)	0.3745 (3)	0.5787 (1)	0.0246 (4)
O3	0.8918 (2)	0.5017 (3)	0.7070 (2)	0.0332 (5)
C6	0.8227 (2)	-0.0587 (5)	0.6386 (2)	0.0259 (6)
C7	0.7189 (2)	-0.0404 (5)	0.5933 (2)	0.0262 (6)
O4	0.68039 (14)	0.0563 (4)	0.5173 (2)	0.0273 (5)
O5	0.6760 (2)	-0.1180 (4)	0.6298 (2)	0.0392 (6)
C8	0.6434 (2)	0.0264 (5)	0.3201 (2)	0.0306 (7)
C9	0.6133 (2)	0.2314 (5)	0.3157 (2)	0.0280 (7)
O6	0.6620 (2)	0.3283 (3)	0.3910 (2)	0.0272 (5)
07	0.5472 (2)	0.2977 (4)	0.2475 (2)	0.0440 (7)
C10	0.7982 (2)	0.0886 (5)	0.3386 (2)	0.0267 (6)
C11	0.8453 (2)	0.2756 (5)	0.3804 (2)	0.0254 (6)
O8	0.8431 (2)	0.3265 (3)	0.4564 (2)	0.0245 (5)
09	0.8841 (2)	0.3699 (4)	0.3457 (2)	0.0391 (6)
O1W	0.6385 (2)	0.0045 (4)	0.1073 (2)	0.0305 (5)
O2W	0.4487 (2)	0.1020 (4)	0.0871 (2)	0.0313 (5)
O3W	0.4909 (2)	-0.2809 (4)	0.0378 (2)	0.0446 (7)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Col-08	1.869 (2)	NI-C4	1.500 (4)
Col-O4	1.894 (2)	N2-C10	1.502 (4)
$\mathrm{Col-O2}$	1.904 (2)	N2-C8	1.505 (4)
$\mathrm{Col-O6}$	1.914 (2)	C4-C5	1.520 (4)
$\mathrm{Col}-\mathrm{N} 2$	1.948 (3)	C5-O3	1.217 (4)
$\mathrm{Col}-\mathrm{NI}$	1.948 (2)	C5-O2	1.297 (4)
$\mathrm{Co} 2-\mathrm{O} 2 \mathrm{~W}$	2.078 (2)	C6-C7	1.514 (4)
Co2-O3W	2.083 (3)	C7-O5	1.238 (4)
Co2-OIW	2.124 (2)	C7-04	1.284 (4)
$\mathrm{Ol}-\mathrm{C} 2$	1.427 (4)	C8-C9	1.507 (5)
$\mathrm{Cl}-\mathrm{Nl}$	1.494 (4)	C9-07	1.224 (4)
$\mathrm{C} 1--\mathrm{C} 2$	1.528 (5)	C9-O6	1.294 (4)
C2-C3	1.519 (5)	C10-C11	1.509 (5)
C3-N2	1.497 (4)	C11-09	1.223 (4)
N1-C6	1.500 (4)	C11-08	1.298 (4)

O8-Col-O4	178.4 (1)	C6-N1-Col	107.7 (2)
$\mathrm{O} 8-\mathrm{Col}-\mathrm{O} 2$	89.6 (1)	$\mathrm{C} 4-\mathrm{NI}-\mathrm{Col}$	103.7 (2)
$\mathrm{O} 4-\mathrm{Col}-\mathrm{O} 2$	88.9 (1)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 10$	112.9 (2)
O8-Col-O6	89.1 (1)	C3-N2-C8	109.4 (2)
O4- $\mathrm{Col}-\mathrm{O6}$	90.5 (1)	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 8$	109.6 (2)
O2-Col-O6	92.46 (9)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Col}$	113.1 (2)
$\mathrm{O} 8-\mathrm{Col}-\mathrm{N} 2$	87.7 (1)	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Col}$	107.8 (2)
$\mathrm{O} 4-\mathrm{Col}-\mathrm{N} 2$	93.8 (1)	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{Col}$	103.5 (2)
$\mathrm{O} 2-\mathrm{Col}-\mathrm{N} 2$	176.4 (1)	N1-C4-C5	109.3 (2)
$\mathrm{O} 6-\mathrm{Col}-\mathrm{N} 2$	85.2 (1)	O3-C5-O2	124.2 (3)
$\mathrm{O}-\mathrm{Col}-\mathrm{N} 1$	92.5 (1)	O3-C5-C4	121.3 (3)
$\mathrm{O} 4-\mathrm{Col}-\mathrm{N} 1$	87.8 (1)	O2-C5-C4	114.4 (3)
$\mathrm{O} 2-\mathrm{Col}-\mathrm{N} 1$	84.7 (1)	C5-O2-Col	113.6 (2)
O6-Col-N1	176.7 (1)	N1-C6-C7	112.0 (2)
$\mathrm{N} 2-\mathrm{Col}-\mathrm{N} 1$	97.7 (1)	O5-C7-O4	123.6 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Co} 2-\mathrm{O} 3 \mathrm{~W}$	90.9 (1)	O5-C7-C6	119.7 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Co} 2-\mathrm{O} 3 W^{\prime}$	89.1 (1)	O4-C7-C6	116.7 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Co} 2-\mathrm{O} 1 \mathrm{~W}$	93.34 (9)	C7-O4-Col	115.0 (2)
$\mathrm{O} 3 \mathrm{~W}-\mathrm{Co} 2-\mathrm{O} 1 \mathrm{~W}$	88.3 (1)	N2-C8-C9	108.9 (3)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	115.9 (2)	O7-C9-06	123.5 (3)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 3$	112.0 (3)	O7-C9-C8	122.4 (3)
$\mathrm{O}-\mathrm{C} 2-\mathrm{Cl}$	104.0 (2)	O6-C9-C8	114.1 (3)
C3-C2-C1	116.8 (3)	C9-06- Col	114.4 (2)
N2-C3-C2	116.3 (3)	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{Cl1}$	112.0 (2)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 6$	113.2 (2)	O9-C11-O8	122.7 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	108.1 (2)	O9-C11-C10	121.9 (3)
C6-N1-C4	109.9 (2)	O8-C11-C10	115.4 (3)
$\mathrm{Cl}-\mathrm{Ni}-\mathrm{Col}$	113.7 (2)	C11-O8-Col	116.0 (2)

Symmetry code: (i) $1-x,-y,-z$.

Data were collected by established procedures. Dispersion corrections and absorption coefficients were taken from International Tables for Crystallography (1992, Vol. C, Tables 6.1.1.4 and 4.2.6.8).

Data collection: SHELXTL/PC (Sheldrick, 1990). Cell refinement: SHELXTLPC. Data reduction: SHELXTLPC. Program(s) used to solve structure: $S H E L X T L P C$. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93.

This work was supported by a Zhongshan University Research Grant and a Hong Kong Research Grants Council Earmarked Grant CUHK 89/93E.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Auerbach, U., Stockheim, C., Weyhermüller, T., Wieghardt, K. \& Nuber, B. (1993). Angew. Chem. Int. Ed. Engl. 32, 714-716.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kalina, M., Pavelčik, F. \& Majer, J. (1978). Collect. Czech. Chem. Commun. 43, 3140-3147.
Kopfmann, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Sato, M. \& Yano, S. (1989). Bull. Chem. Soc. Jpn, 62, 3932-3938.
Sheldrick, G. M. (1990). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Song, R.-F., Zhang, C.-Z., Li, F., Jin, S.-C. \& Jin, Z.-S. (1992). Chem. Res. Chin. Univ. 8, 399-404.

